Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
BMC Biol ; 21(1): 236, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884994

RESUMO

BACKGROUND: The recruitment of effector cells is one of the novel functions described for extracellular vesicles (EVs) that needs further study. For instance, cell recruitment by mesenchymal stromal cell derived-EVs (MSC-EVs) is one of the features by which MSC-EVs may induce regeneration and ameliorate tissue injury. On the other hand, increasing evidence suggests that cancer EVs play an important role in the preparation of the pre-metastatic niche (PMN) by recruiting their primary tumour cells. Understanding and measuring the potential of MSC-EVs or cancer-EVs to induce cell migration and recruitment is essential for cell-free therapeutic approaches and/or for a better knowledge of cancer metastasis, respectively. In this context, classical in vitro migration assays do not completely mimic the potential situation by which EVs exert their chemotactic capacity. RESULTS: We adapted an agarose spot migration assay as an in vitro system to evaluate the cell recruitment capacity of locally delivered or localized EVs. Cell migration was tracked for 12 h or 48 h, respectively. Thereafter, endpoint migration images and time-lapse videos were analysed to quantify several parameters aiming to determine the migration of cells to either MSC-EV or pro-metastatic EV. The number of cells contained inside the agarose spots, the migration distance, the area occupied by cells, the directionality of the cell movement, and the Euclidean distance were measured. This multi-parametric evaluation revealed the potential of different MSC-EV preparations to recruit endothelial cells and to detect an enhanced recruitment capacity of highly metastatic PC3-derived EVs (PC3-EVs) compared to low-metastatic LNCaP-EVs in a tumour cell-specific manner. CONCLUSIONS: Overall, this agarose spot migration assay may offer a diversity of measurements and migration settings not provided by classical migration assays and reveal its potential use in the EV field in two different contexts with recruitment in common: regeneration and cancer metastasis.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Medicina Regenerativa , Sefarose , Fatores Quimiotáticos , Células Endoteliais , Neoplasias/terapia
2.
Cell Mol Life Sci ; 80(8): 238, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535170

RESUMO

Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.


Assuntos
Doença de Huntington , Células-Tronco Neurais , Humanos , Animais , Camundongos , Doença de Huntington/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Corpo Estriado/metabolismo , Diferenciação Celular , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animais de Doenças
3.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569568

RESUMO

MicroRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) are potential diagnostic and prognostic biomarkers. However, discrepancies in miRNA patterns and their validation are still frequent due to differences in sample origin, EV isolation, and miRNA sequencing methods. The aim of the present study is to find a reliable EV isolation method for miRNA sequencing, adequate for clinical application. To this aim, two comparative studies were performed in parallel with the same human plasma sample: (i) isolation and characterization of EVs obtained using three procedures: size exclusion chromatography (SEC), iodixanol gradient (GRAD), and its combination (SEC+GRAD) and (ii) evaluation of the yield of miRNA sequences obtained using NextSeq 500 (Illumina) and three miRNA library preparation protocols: NEBNext, NEXTFlex, and SMARTer smRNA-seq. The conclusion of comparison (i) is that recovery of the largest amount of EVs and reproducibility were attained with SEC, but GRAD and SEC+GRAD yielded purer EV preparations. The conclusion of (ii) is that the NEBNext library showed the highest reproducibility in the number of miRNAs recovered and the highest diversity of miRNAs. These results render the combination of GRAD EV isolation and NEBNext library preparation for miRNA retrieval as adequate for clinical applications using plasma samples.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Reprodutibilidade dos Testes , MicroRNAs/genética , Vesículas Extracelulares/genética , Cromatografia em Gel , Plasma
4.
Front Immunol ; 13: 957797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189264

RESUMO

Regulatory B cells (Breg) are essential players in tolerance and immune homeostasis. However, lack of specific Breg markers limit their potential in clinical settings. Mesenchymal stromal cells (MSC) modulate B cell responses and are described to induce Breg in vitro. The aim of this work was to characterize MSC induced Breg (iBreg) and identify specific Breg biomarkers by RNAseq. After 7-day coculture with adipose tissue-derived MSC, B cells were enriched in transitional B cell populations, with increased expression and secretion of IL-10 and no TNFα. In addition, iBreg showed potential to modulate T cell proliferation at 2 to 1 cell ratios and their phenotype remained stable for 72h. RNAseq analysis of sorted IL-10 positive and negative iBreg populations identified over 1500 differentially expressed genes (DEG) among both populations. Analysis of biological processes of DEG highlighted an enrichment of immune regulation and extracellular matrix genes in IL-10- iBreg populations, while IL-10+ iBreg DEG were mostly associated with cell activation. This was supported by T cells modulation assays performed in the presence of anti-IL-10 neutralizing antibodies showing the non-essential role of IL-10 in the immunomodulatory capacity of iBregs on T cells. However, based on RNAseq results we explored the role of TGF-ß and found out that it plays a major role on iBreg induction and iBreg immunomodulatory properties. Therefore, we report that MSC induce B cell populations characterized by the generation of extracellular matrix and immune modulation independently of IL-10.


Assuntos
Linfócitos B Reguladores , Células-Tronco Mesenquimais , Anticorpos Neutralizantes/metabolismo , Biomarcadores/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076936

RESUMO

Mesenchymal stromal cell-derived extracellular vesicles (MSC-EV) are widely considered as a cell-free therapeutic alternative to MSC cell administration, due to their immunomodulatory and regenerative properties. However, the interaction mechanisms between EV and target cells are not fully understood. The surface glycans could be key players in EV-cell communication, being specific molecular recognition patterns that are still little explored. In this study, we focused on the role of N-glycosylation of MSC-EV as mediators of MSC-EV and endothelial cells' interaction for subsequent EV uptake and the induction of cell migration and angiogenesis. For that, EV from immortalized Wharton's Jelly MSC (iWJ-MSC-EV) were isolated by size exclusion chromatography (SEC) and treated with the glycosidase PNGase-F in order to remove wild-type N-glycans. Then, CFSE-labelled iWJ-MSC-EV were tested in the context of in vitro capture, agarose-spot migration and matrigel-based tube formation assays, using HUVEC. As a result, we found that the N-glycosylation in iWJ-MSC-EV is critical for interaction with HUVEC cells. iWJ-MSC-EV were captured by HUVEC, stimulating their tube-like formation ability and promoting their recruitment. Conversely, the removal of N-glycans through PNGase-F treatment reduced all of these functional activities induced by native iWJ-MSC-EV. Finally, comparative lectin arrays of iWJ-MSC-EV and PNGase-F-treated iWJ-MSC-EV found marked differences in the surface glycosylation pattern, particularly in N-acetylglucosamine, mannose, and fucose-binding lectins. Taken together, our results highlight the importance of N-glycans in MSC-EV to permit EV-cell interactions and associated functions.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Comunicação Celular , Vesículas Extracelulares/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/metabolismo , Polissacarídeos/metabolismo
6.
Theranostics ; 12(10): 4656-4670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832072

RESUMO

Rationale: Extracellular vesicles (EVs) from mesenchymal stromal cell (MSC) are a potential therapy for cardiac healing after myocardial infarction (MI). Nevertheless, neither their efficient administration nor therapeutic mechanisms are fully elucidated. Here, we evaluate the preclinical efficacy of a tissue engineering approach to locally deliver porcine cardiac adipose tissue MSC-EV (cATMSC-EV) in an acute MI pig model. Methods: After MI by permanent ligation of the coronary artery, pigs (n = 24) were randomized to Untreated or treated groups with a decellularised pericardial scaffold filled with peptide hydrogel and cATMSC-EV purified by size exclusion chromatography (EV-Treated group) or buffer (Control group), placed over the post-infarcted myocardium. Results: After 30 days, cardiac MRI showed an improved cardiac function in EV-Treated animals, with significantly higher right ventricle ejection fraction (+20.8% in EV-Treated; p = 0.026), and less ventricle dilatation, indicating less myocardial remodelling. Scar size was reduced, with less fibrosis in the distal myocardium (-42.6% Col I in EV-Treated vs Untreated; p = 0.03), a 2-fold increase in vascular density (EV-Treated; p = 0.019) and less CCL2 transcription in the infarct core. EV-treated animals had less macrophage infiltration in the infarct core (-31.7% of CD163+ cells/field in EV-Treated; p = 0.026), but 5.8 times more expressing anti-inflammatory CD73 (p = 0.015). Systemically, locally delivered cATMSC-EV also triggered a systemic effect, doubling the circulating IL-1ra (p = 0.01), and reducing the PBMC rush 2d post-MI, the TNFα and GM-CSF levels at 30d post-MI, and modulating the CD73+ and CCR2+ monocyte populations, related to immunomodulation and fibrosis modulation. Conclusions: These results highlight the potential of cATMSC-EV in modulating hallmarks of ischemic injury for cardiac repair after MI.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Modelos Animais de Doenças , Fibrose , Imunomodulação , Leucócitos Mononucleares , Infarto do Miocárdio/patologia , Miocárdio/patologia , Suínos , Remodelação Ventricular
7.
Eur J Cell Biol ; 101(3): 151227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35460958

RESUMO

Extracellular vesicles (EVs) are becoming promising tools for clinical application, either as sources of disease-specific molecular signatures for the unraveling of disease pathophysiology and establishment of novel biomarkers, or as platforms for cell-free nanotherapy. Yet, an unsolved issue is to define standardized techniques for EV isolation allowing data comparison across laboratories worldwide. Considering the difficulties to find this necessary consensus, it has to be stressed out that the outcome of the downstream analysis might be deeply biased by the isolation method, among other variables. Thus, it is crucial that the researcher is aware of the strengths and weaknesses of each method keeping their intended use in mind, and to sufficiently report the methodology details for the results to be comparable and solid. This review aims to present the most widely used EV isolation methods, from the initial differential ultracentrifugation (dUC) to newest approaches.


Assuntos
Vesículas Extracelulares , Ultracentrifugação/métodos
8.
Front Immunol ; 13: 842996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330909

RESUMO

Acute-on chronic liver failure (ACLF) is a syndrome that develops in patients with acutely decompensated cirrhosis (AD). It is characterized by a systemic hyperinflammatory state, leading to multiple organ failure. Our objective was to analyze macrophage anti-inflammatory protein CD5L in plasma extracellular vesicles (EVs) and assess its as yet unknown relationship with lipid mediators in ACLF. With this aim, EVs were purified by size exclusion chromatography from the plasma of healthy subjects (HS) (n=6) and patients with compensated cirrhosis (CC) (n=6), AD (n=11) and ACLF (n=11), which were defined as positive for CD9, CD5L and CD63 and their size, number, morphology and lipid mediator content were characterized by NTA, EM, and LC-MS/MS, respectively. Additionally, plasma CD5L was quantified by ELISA in 10 HS, 20 CC and 149 AD patients (69 ACLF). Moreover, macrophage CD5L expression and the biosynthesis of specialized lipid mediators (SPMs) were characterized in vitro in primary cells. Our results indicate that circulating EVs were significantly suppressed in cirrhosis, regardless of severity, and showed considerable alterations in CD5L and lipid mediator content as the disease progressed. In AD, levels of EV CD5L correlated best with those of the SPM RvE1. Analysis of total plasma supported these data and showed that, in ACLF, low CD5L levels were associated with circulatory (p<0.001), brain (p<0.008) and respiratory (p<0.05) failure (Mann-Whitney test). Functional studies in macrophages indicated a positive feedback loop between CD5L and RvE1 biosynthesis. In summary, we have determined a significant alteration of circulating EV contents in ACLF, with a loss of anti-inflammatory and pro-resolving molecules involved in the control of acute inflammation in this condition.


Assuntos
Insuficiência Hepática Crônica Agudizada , Proteínas Reguladoras de Apoptose , Vesículas Extracelulares , Receptores Depuradores , Cromatografia Líquida , Fibrose , Humanos , Lipídeos , Cirrose Hepática , Prognóstico , Índice de Gravidade de Doença , Espectrometria de Massas em Tandem
9.
Biomedicines ; 9(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34572457

RESUMO

Dementia with Lewy bodies (DLB) is one of the most common causes of degenerative dementia, after Alzheimer's disease (AD), and presents pathological and clinical overlap with both AD and Parkinson's disease (PD). Consequently, only one in three DLB cases is diagnosed correctly. Platelets, previously related to neurodegeneration, contain microRNAs (miRNAs) whose analysis may provide disease biomarkers. Here, we profiled the whole platelet miRNA transcriptome from DLB patients and healthy controls. Differentially expressed miRNAs were further validated in three consecutive studies from 2017 to 2019 enrolling 162 individuals, including DLB, AD, and PD patients, and healthy controls. Results comprised a seven-miRNA biosignature, showing the highest diagnostic potential for the differentiation between DLB and AD. Additionally, compared to controls, two miRNAs were down-regulated in DLB, four miRNAs were up-regulated in AD, and two miRNAs were down-regulated in PD. Predictive target analysis identified three disease-specific clusters of pathways as a result of platelet-miRNA deregulation. Our cross-sectional study assesses the identification of a novel, highly specific and sensitive platelet-associated miRNA-based biosignature, which distinguishes DLB from AD.

10.
J Extracell Vesicles ; 10(7): e12093, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34035881

RESUMO

Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field.


Assuntos
Biomarcadores/urina , Vesículas Extracelulares/fisiologia , Sistema Urinário/patologia , Comitês Consultivos , Líquidos Corporais/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Rim , Padrões de Referência , Reprodutibilidade dos Testes , Sociedades , Urina
11.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925530

RESUMO

Regulatory B (Breg) cells are endowed with immune suppressive functions. Various human and murine Breg subtypes have been reported. While interleukin (IL)-10 intracellular staining remains the most reliable way to identify Breg cells, this technique hinders further essential functional studies. Recent findings suggest that CD9 is an effective surface marker of murine IL-10 competent Breg cells. However, the stability of CD9 and its relevance as a unique marker for human Breg cells, which have been widely characterized as CD24hiCD38hi, have not been investigated. Here, we demonstrate that CD9 expression is sensitive to in vitro B cell stimulations. CD9 expression could either be re-expressed or downregulated in purified CD9-negative B cells and CD9-positive B cells, respectively. We found no significant differences in the Breg differentiation capacity of the CD9-negative and CD9-positive B cells. Furthermore, CD9-positive B cells co-express CD40 and CD86, suggesting their nature as B cell activation or co-stimulatory molecules, rather than regulatory ones. Therefore, we report the relatively unstable CD9 as a distinct surface molecule, indicating the need for further research for a more reliable marker to purify human Breg cells.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Linfócitos B Reguladores/imunologia , Antígeno CD24/imunologia , Glicoproteínas de Membrana/imunologia , Tetraspanina 29/imunologia , Tecido Adiposo/citologia , Biomarcadores/análise , Diferenciação Celular/imunologia , Criança , Humanos , Interleucina-10/imunologia , Ativação Linfocitária , Células-Tronco Mesenquimais/imunologia , Tonsila Palatina/citologia , Regulação para Cima
12.
Bioact Mater ; 6(10): 3314-3327, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33778207

RESUMO

The administration of extracellular vesicles (EV) from mesenchymal stromal cells (MSC) is a promising cell-free nanotherapy for tissue repair after myocardial infarction (MI). However, the optimal EV delivery strategy remains undetermined. Here, we designed a novel MSC-EV delivery, using 3D scaffolds engineered from decellularised cardiac tissue as a cell-free product for cardiac repair. EV from porcine cardiac adipose tissue-derived MSC (cATMSC) were purified by size exclusion chromatography (SEC), functionally analysed and loaded to scaffolds. cATMSC-EV markedly reduced polyclonal proliferation and pro-inflammatory cytokines production (IFNγ, TNFα, IL12p40) of allogeneic PBMC. Moreover, cATMSC-EV recruited outgrowth endothelial cells (OEC) and allogeneic MSC, and promoted angiogenesis. Fluorescently labelled cATMSC-EV were mixed with peptide hydrogel, and were successfully retained in decellularised scaffolds. Then, cATMSC-EV-embedded pericardial scaffolds were administered in vivo over the ischemic myocardium in a pig model of MI. Six days from implantation, the engineered scaffold efficiently integrated into the post-infarcted myocardium. cATMSC-EV were detected within the construct and MI core, and promoted an increase in vascular density and reduction in macrophage and T cell infiltration within the damaged myocardium. The confined administration of multifunctional MSC-EV within an engineered pericardial scaffold ensures local EV dosage and release, and generates a vascularised bioactive niche for cell recruitment, engraftment and modulation of short-term post-ischemic inflammation.

13.
J Extracell Vesicles ; 10(3): e12046, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33489013

RESUMO

The identification of individuals with null alleles enables studying how the loss of gene function affects infection. We previously described a non-functional variant in SIGLEC1, which encodes the myeloid-cell receptor Siglec-1/CD169 implicated in HIV-1 cell-to-cell transmission. Here we report a significant association between the SIGLEC1 null variant and extrapulmonary dissemination of Mycobacterium tuberculosis (Mtb) in two clinical cohorts comprising 6,256 individuals. Local spread of bacteria within the lung is apparent in Mtb-infected Siglec-1 knockout mice which, despite having similar bacterial load, developed more extensive lesions compared to wild type mice. We find that Siglec-1 is necessary to induce antigen presentation through extracellular vesicle uptake. We postulate that lack of Siglec-1 delays the onset of protective immunity against Mtb by limiting antigen exchange via extracellular vesicles, allowing for an early local spread of mycobacteria that increases the risk for extrapulmonary dissemination.


Assuntos
Vesículas Extracelulares/imunologia , Mycobacterium tuberculosis/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Animais , Apresentação de Antígeno/imunologia , Humanos , Imunidade/genética , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Mycobacterium tuberculosis/patogenicidade , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Tuberculose dos Linfonodos/microbiologia , Tuberculose dos Linfonodos/patologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
14.
Front Med (Lausanne) ; 8: 781239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977082

RESUMO

Background: Living-donor kidney transplant (LDKT) recipients undergoing desensitization for Human Leukocyte Antigen (HLA)-incompatibility have a high risk of developing antibody-mediated rejection (ABMR). The purpose of the study is to evaluate if residual B cell activity after desensitization could be estimated by the presence of circulating B cell-derived extracellular vesicles (BEVs). Methods: BEVs were isolated by Sepharose-based size exclusion chromatography and defined as CD19+ and HLA-II+ extracellular vesicles. We analyzed stored serum samples from positive crossmatch LDKT recipients before and after desensitization at first post-transplant biopsy and at 12-month protocol biopsy (n = 11). Control groups were formed by hypersensitized patients who were not submitted to desensitization (n = 10) and by low-risk recipients (n = 9). A prospective validation cohort of 11 patients also included the analysis of B cells subpopulations in recipients' blood and lymph nodes recovered upon graft implantation, along with BEVs analysis before and after desensitization. Results: We found out that CD19+ and HLA-II+BEVs dropped significantly after desensitization and relapse in patients who later developed ABMR was evident. We validated these findings in a proof-of-concept prospective cohort of 6 patients who received the same desensitization protocol and also in a control group of 5 LDKT recipients. In these patients, B cell subpopulations were also studied in recipients' blood and lymph nodes that were recovered before the graft implantation. We confirmed the significant drop in BEVs after desensitization and that this paralleled the reduction in CD19+cells in lymph nodes, while in peripheral blood B cells, this change was almost undetectable. Conclusions: BEVs reflected B cell residual activity after desensitization and this could be a valid surrogate of humoral alloreactivity in this setting.

15.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942629

RESUMO

Multipotent mesenchymal stromal cells (MSC) represent a promising strategy for a variety of medical applications. Although only a limited number of MSC engraft and survive after in vivo cellular infusion, MSC have shown beneficial effects on immunomodulation and tissue repair. This indicates that the contribution of MSC exists in paracrine signaling, rather than a cell-contact effect of MSC. In this review, we focus on current knowledge about tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) and mechanisms based on extracellular vesicles (EV) that govern long-lasting immunosuppressive and regenerative activity of MSC. In this context, in particular, we discuss the very robust set of findings by Jha and colleagues, and the opportunity to potentially extend their research focus on EV isolated in concentrated conditioned media (CCM) from adipose tissue derived MSC (ASC). Particularly, the authors showed that ASC-CCM mitigated visual deficits after mild traumatic brain injury in mice. TSG-6 knockdown ASC were, then, used to generate TSG-6-depleted CCM that were not able to replicate the alleviation of abnormalities in injured animals. In light of the presented results, we envision that the infusion of much distilled ASC-CCM could enhance the alleviation of visual abnormalities. In terms of EV research, the advantages of using size-exclusion chromatography are also highlighted because of the enrichment of purer and well-defined EV preparations. Taken together, this could further delineate and boost the benefit of using MSC-based regenerative therapies in the context of forthcoming clinical research testing in diseases that disrupt immune system homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Moléculas de Adesão Celular/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Meios de Cultivo Condicionados/metabolismo , Humanos
16.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752018

RESUMO

Peritoneal dialysis (PD) is an established home care, cost-effective renal replacement therapy (RRT), which offers several advantages over the most used dialysis modality, hemodialysis. Despite its potential benefits, however, PD is an under-prescribed method of treating uremic patients. Infectious complications (primarily peritonitis) and bio-incompatibility of PD solutions are the main contributors to PD drop-out, due to their potential for altering the functional and anatomical integrity of the peritoneal membrane. To improve the clinical outcome of PD, there is a need for biomarkers to identify patients at risk of PD-related complications and to guide personalized interventions. Several recent studies have shown that proteomic investigation may be a powerful tool in the prediction, early diagnosis, prognostic assessment, and therapeutic monitoring of patients on PD. Indeed, analysis of the proteome present in PD effluent has uncovered several proteins involved in inflammation and pro-fibrotic insult, in encapsulating peritoneal sclerosis, or even in detecting early changes before any measurable modifications occur in the traditional clinical parameters used to evaluate PD efficacy. We here review the proteomic studies conducted thus far, addressing the potential use of such omics methodology in identifying potential new biomarkers of the peritoneal membrane welfare in relation to dialytic prescription and adequacy.


Assuntos
Diálise Peritoneal , Peritônio/metabolismo , Peritonite/terapia , Proteoma/genética , Biomarcadores/metabolismo , Humanos , Peritônio/patologia , Peritonite/genética , Peritonite/patologia , Prognóstico , Proteômica , Diálise Renal/métodos
17.
Cytotherapy ; 22(9): 482-485, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32425691

RESUMO

STATEMENT: The International Society for Cellular and Gene Therapies (ISCT) and the International Society for Extracellular Vesicles (ISEV) recognize the potential of extracellular vesicles (EVs, including exosomes) from mesenchymal stromal cells (MSCs) and possibly other cell sources as treatments for COVID-19. Research and trials in this area are encouraged. However, ISEV and ISCT do not currently endorse the use of EVs or exosomes for any purpose in COVID-19, including but not limited to reducing cytokine storm, exerting regenerative effects or delivering drugs, pending the generation of appropriate manufacturing and quality control provisions, pre-clinical safety and efficacy data, rational clinical trial design and proper regulatory oversight.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais/citologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Exossomos/transplante , Vesículas Extracelulares/transplante , Humanos , Sociedades Científicas , Tratamento Farmacológico da COVID-19
18.
Front Cell Dev Biol ; 8: 613583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511119

RESUMO

Extracellular vesicles (EVs) mediate cell-to-cell crosstalk whose content can induce changes in acceptor cells and their microenvironment. MLP29 cells are mouse liver progenitor cells that release EVs loaded with signaling cues that could affect cell fate. In the current work, we incubated 3T3-L1 mouse fibroblasts with MLP29-derived EVs, and then analyzed changes by proteomics and transcriptomics. Results showed a general downregulation of protein and transcript expression related to proliferative and metabolic routes dependent on TGF-beta. We also observed an increase in the ERBB2 interacting protein (ERBIN) and Cxcl2, together with an induction of ribosome biogenesis and interferon-related response molecules, suggesting the activation of immune system signaling.

19.
Transl Neurodegener ; 8: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31592314

RESUMO

BACKGROUND: Because of the increasing life expectancy in our society, aging-related neurodegenerative disorders are one of the main issues in global health. Most of these diseases are characterized by the deposition of misfolded proteins and a progressive cognitive decline. Among these diseases, Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are the most common types of degenerative dementia. Although both show specific features, an important neuropathological and clinical overlap between them hampers their correct diagnosis. In this work, we identified molecular biomarkers aiming to improve the misdiagnosis between both diseases. METHODS: Plasma extracellular vesicles (EVs) -from DLB, AD and healthy controls- were isolated using size-exclusion chromatography (SEC) and characterized by flow cytometry, Nanoparticle Tracking Analysis (NTA) and cryo-electron microscopy. Next Generation Sequencing (NGS) and related bibliographic search was performed and a selected group of EV-associated microRNAs (miRNAs) was analysed by qPCR. RESULTS: Results uncovered two miRNAs (hsa-miR-451a and hsa-miR-21-5p) significantly down-regulated in AD samples respect to DLB patients, and a set of four miRNAs (hsa-miR-23a-3p, hsa-miR-126-3p, hsa-let-7i-5p, and hsa-miR-151a-3p) significantly decreased in AD respect to controls. The two miRNAs showing decreased expression in AD in comparison to DLB provided area under the curve (AUC) values of 0.9 in ROC curve analysis, thus suggesting their possible use as biomarkers to discriminate between both diseases. Target gene analysis of these miRNAs using prediction online tools showed accumulation of phosphorylation enzymes, presence of proteasome-related proteins and genes involved in cell death among others. CONCLUSION: Our data suggest that plasma-EV associated miRNAs may reflect a differential profile for a given dementia-related disorder which, once validated in larger cohorts of patients, could help to improve the differential diagnosis of DLB versus AD.

20.
J Nephrol ; 32(6): 1021-1031, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31617158

RESUMO

BACKGROUND: Peritoneal dialysis (PD) is an optimal renal replacement therapy for patients while waiting for kidney transplantation, but functional failure of the peritoneal membrane (PM), mainly induced by exposure to PD solutions, force many patients to early abandon PD therapy. PM function is evaluated by the peritoneal equilibration test (PET), a tedious technique only detecting alterations in extensively damaged PM. In a previous study, we showed that peritoneal dialysis effluent contained extracellular vesicles (PDE-EV), and that their proteome was significantly different between newly enrolled and long-term PD patients. Here, we report the results of a longitudinal study and compare PDE-EV proteome changes with PET results. METHODS: PDE was collected from 11 patients every 6 months (coincident with PET controls) from 0 months up to 24 months on PD. PDE-EV were isolated by size-exclusion chromatography and the proteome was analyzed by mass spectrometry (LC-MS/MS). Bioinformatic analyses were conducted to evaluate differences between groups. RESULTS: At follow-up endpoint, patients were classified as Stable (n = 7) or Unstable (n = 4) according to PET evolution. Strikingly, PDE-EV from the Stable group showed a significantly higher protein expression compared to Unstable patients already at 6 months on PD, when PET alterations had not been detected yet. CONCLUSIONS: PDE-EV proteome show alterations much earlier than PET monitoring, thus unveiling the potential of PDE-EV proteins as feasible biomarkers of PM alteration in PD patients.


Assuntos
Soluções para Diálise/farmacocinética , Vesículas Extracelulares/metabolismo , Falência Renal Crônica/terapia , Diálise Peritoneal/métodos , Proteômica/métodos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Cromatografia Líquida , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Falência Renal Crônica/metabolismo , Masculino , Pessoa de Meia-Idade , Peritônio/metabolismo , Espectrometria de Massas em Tandem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...